Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.480
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38664026

RESUMO

Objective: To investigate the effects of gelatin methacrylate anhydride (GelMA) hydrogel loaded with small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hUCMSCs-sEVs) in the treatment of full-thickness skin defect wounds in mice. Methods: This study was an experimental study. hUCMSCs-sEVs were extracted by ultracentrifugation, their morphology was observed through transmission electron microscope, and the expression of CD9, CD63, tumor susceptibility gene 101 (TSG101), and calnexin was detected by Western blotting. The human umbilical vein endothelial cells (HUVECs), the 3rd and 4th passages of human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs) were all divided into blank control group (routinely cultured) and hUCMSC-sEV group (cultured with the cell supernatant containing hUCMSCs-sEVs). The cell scratch test was performed and the cell migration rates at 6, 12, and 24 h after scratching were calculated, the cell Transwell assay was performed and the number of migration cells at 12 h after culture was calculated, and the proportion of proliferating cells was detected by 5-acetylidene-2'-deoxyuridine and Hoechst staining at 24 h after culture, with sample numbers being all 3. The simple GelMA hydrogel and the GelMA hydrogel loaded with hUCMSCs-sEVs (hereinafter referred to as hUCMSC-sEV/GelMA hydrogel) were prepared. Then the micromorphology of 2 kinds of hydrogels was observed under scanning electron microscope, the distribution of hUCMSCs-sEVs was observed by laser scanning confocal microscope, and the cumulative release rates of hUCMSCs-sEVs at 0 (immediately), 2, 4, 6, 8, 10, and 12 d after soaking hUCMSC-sEV/GelMA hydrogel in phosphate buffer solution (PBS) were measured and calculated by protein colorimetric quantification (n=3). Twenty-four 6-week-old male C57BL/6J mice were divided into PBS group, hUCMSC-sEV alone group, GelMA hydrogel alone group, and hUCMSC-sEV/GelMA hydrogel group according to the random number table, with 6 mice in each group, and after the full-thickness skin defect wounds on the back of mice in each group were produced, the wounds were performed with PBS injection, hUCMSC-sEV suspenson injection, simple GelMA coverage, and hUCMSC-sEV/GelMA hydrogel coverage, respectively. Wound healing was observed on post injury day (PID) 0 (immediately), 4, 8, and 12, and the wound healing rates on PID 4, 8, and 12 were calculated, and the wound tissue was collected on PID 12 for hematoxylin-eosin staining to observe the structure of new tissue, with sample numbers being both 6. Results: The extracted hUCMSCs-sEVs showed a cup-shaped structure and expressed CD9, CD63, and TSG101, but barely expressed calnexin. At 6, 12, and 24 h after scratching, the migration rates of HEKs (with t values of 25.94, 20.98, and 20.04, respectively), HDFs (with t values of 3.18, 5.68, and 4.28, respectively), and HUVECs (with t values of 4.32, 19.33, and 4.00, respectively) in hUCMSC-sEV group were significantly higher than those in blank control group (P<0.05). At 12 h after culture, the numbers of migrated HEKs, HDFs, and HUVECs in hUCMSC-sEV group were 550±23, 235±9, and 856±35, respectively, which were significantly higher than 188±14, 97±6, and 370±32 in blank control group (with t values of 22.95, 23.13, and 17.84, respectively, P<0.05). At 24 h after culture, the proportions of proliferating cells of HEKs, HDFs, and HUVECs in hUCMSC-sEV group were significantly higher than those in blank control group (with t values of 22.00, 13.82, and 32.32, respectively, P<0.05). The inside of simple GelMA hydrogel showed a loose and porous sponge-like structure, and hUCMSCs-sEVs was not observed in it. The hUCMSC-sEV/GelMA hydrogel had the same sponge-like structure, and hUCMSCs-sEVs were uniformly distributed in clumps. The cumulative release rate curve of hUCMSCs-sEVs from hUCMSC-sEV/GelMA hydrogel tended to plateau at 2 d after soaking, and the cumulative release rate of hUCMSCs-sEVs was (59.2±1.8)% at 12 d after soaking. From PID 0 to 12, the wound areas of mice in the 4 groups gradually decreased. On PID 4, 8, and 12, the wound healing rates of mice in hUCMSC-sEV/GelMA hydrogel group were significantly higher than those in the other 3 groups (P<0.05); the wound healing rates of mice in GelMA hydrogel alone group and hUCMSC-sEV alone group were significantly higher than those in PBS group (P<0.05). On PID 8 and 12, the wound healing rates of mice in hUCMSC-sEV alone group were significantly higher than those in GelMA hydrogel alone group (P<0.05). On PID 12, the wounds of mice in hUCMSC-sEV/GelMA hydrogel group showed the best wound epithelization, loose and orderly arrangement of dermal collagen, and the least number of inflammatory cells, while the dense arrangement of dermal collagen and varying degrees of inflammatory cell infiltration were observed in the wounds of mice in the other 3 groups. Conclusions: hUCMSCs-sEVs can promote the migration and proliferation of HEKs, HDFs, and HUVECs which are related to skin wound healing, and slowly release in GelMA hydrogel. The hUCMSC-sEV/GelMA hydrogel as a wound dressing can significantly improve the healing speed of full-thickness skin defect wounds in mice.


Assuntos
Vesículas Extracelulares , Gelatina , Hidrogéis , Células-Tronco Mesenquimais , Cordão Umbilical , Cicatrização , Animais , Camundongos , Humanos , Cordão Umbilical/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Gelatina/química , Hidrogéis/química , Vesículas Extracelulares/química , Cicatrização/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia , Células Endoteliais da Veia Umbilical Humana , Metacrilatos/química , Proliferação de Células/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos
2.
Stem Cell Res Ther ; 15(1): 121, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664697

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer and, despite its adverse effects, chemotherapy is the standard systemic treatment option for TNBC. Since, it is of utmost importance to consider the combination of different agents to achieve greater efficacy and curability potential, MSC secretome is a possible innovative alternative. METHODS: In the present study, we proposed to investigate the anti-tumor effect of the combination of a chemical agent (paclitaxel) with a complex biological product, secretome derived from human Uterine Cervical Stem cells (CM-hUCESC) in TNBC. RESULTS: The combination of paclitaxel and CM-hUCESC decreased cell proliferation and invasiveness of tumor cells and induced apoptosis in vitro (MDA-MB-231 and/or primary tumor cells). The anti-tumor effect was confirmed in a mouse tumor xenograft model showing that the combination of both products has a significant effect in reducing tumor growth. Also, pre-conditioning hUCESC with a sub-lethal dose of paclitaxel enhances the effect of its secretome and in combination with paclitaxel reduced significantly tumor growth and even allows to diminish the dose of paclitaxel in vivo. This effect is in part due to the action of extracellular vesicles (EVs) derived from CM-hUCESC and soluble factors, such as TIMP-1 and - 2. CONCLUSIONS: In conclusion, our data demonstrate the synergistic effect of the combination of CM-hUCESC with paclitaxel on TNBC and opens an opportunity to reduce the dose of the chemotherapeutic agents, which may decrease chemotherapy-related toxicity.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais , Paclitaxel , Secretoma , Neoplasias de Mama Triplo Negativas , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Feminino , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Secretoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Colo do Útero/metabolismo , Colo do Útero/patologia , Colo do Útero/efeitos dos fármacos
3.
J Indian Prosthodont Soc ; 24(2): 152-158, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38650340

RESUMO

AIM: In routine dental care, various dental luting cements are utilized to cement the dental prosthesis. Thus, the aim of the current study was to assess the Cytotoxic effect of three different dental luting cements on human gingival mesenchymal stem cell and evaluation of cytokines and growth factors release. SETTINGS AND DESIGN: Cytotoxicity of glass ionomer cement (GIC), resin modified glass ionomer cement (RMGIC) and resin cement (RC) on the human gingival mesenchymal stem cells (HGMSCs) was evaluated. Amongst the cements tested, least cytotoxic cement was further tested for the release of cytokines and growth factors. MATERIALS AND METHODS: MTT test was used to evaluate the cytotoxicity of the dental luting cements at 1 h, 24 h, and 48 h on HGMSCs. Cytokines such as interleukin (IL) 1α & IL 8 and growth factors such as platelet derived growth factor & transforming growth factor beta release from the least cytotoxic RC was evaluated using flow cytometry analysis. STATISTICAL ANALYSIS USED: The mean absorbance values by MTT assay and cell viability at various time intervals between four groups were compared using a one way analysis of variance test and Tukey's post hoc test. The least cytotoxic RC group and the control group's mean levels of cytokines and growth factors were compared using the Mann-Whitney test. RESULT: As exposure time increased, the dental luting cement examined in this study were cytotoxic. RC was the least cytotoxic, RMGIC was moderate and glass ionomer cement showed the highest cytotoxic effect. Concomitantly, a significant positive biological response of gingival mesenchymal stem cells with the release of ILs when exposed to the RC was observed. CONCLUSION: For a fixed dental prosthesis to be clinically successful over the long term, it is imperative that the biocompatibility of the luting cement be taken into account in order to maintain a healthy periodontium surrounding the restoration.


Assuntos
Citocinas , Cimentos Dentários , Gengiva , Peptídeos e Proteínas de Sinalização Intercelular , Células-Tronco Mesenquimais , Humanos , Gengiva/citologia , Gengiva/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cimentos Dentários/farmacologia , Cimentos Dentários/química , Cimentos Dentários/toxicidade , Técnicas In Vitro , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/toxicidade , Cimentos de Ionômeros de Vidro/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas
4.
Histochem Cell Biol ; 161(5): 409-421, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402366

RESUMO

Cancer is understood as a multifactorial disease that involve multiple cell types and phenotypes in the tumor microenvironment (TME). The components of the TME can interact directly or via soluble factors (cytokines, chemokines, growth factors, extracellular vesicles, etc.). Among the cells composing the TME, mesenchymal stem cells (MSCs) appear as a population with debated properties since it has been seen that they can both promote or attenuate tumor progression. For various authors, the main mechanism of interaction of MSCs is through their secretome, the set of molecules secreted into the extracellular milieu, recruiting, and influencing the behavior of other cells in inflammatory environments where they normally reside, such as wounds and tumors. Natural products have been studied as possible cancer treatments, appealing to synergisms between the molecules in their composition; thus, extracts obtained from Petiveria alliacea (Anamu-SC) and Caesalpinia spinosa (P2Et) have been produced and studied previously on different models, showing promising results. The effect of plant extracts on the MSC secretome has been poorly studied, especially in the context of the TME. Here, we studied the effect of Anamu-SC and P2Et extracts in the human adipose-derived MSC (hAMSC)-tumor cell interaction as a TME model. We also investigated the influence of the hAMSC secretome, in combination with these natural products, on tumor cell hallmarks such as viability, clonogenicity, and migration. In addition, hAMSC gene expression and protein synthesis were evaluated for some key factors in tumor progression in the presence of the extracts by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Multiplex, respectively. It was found that the presence of the hAMSC secretome did not affect the cytotoxic or clonogenicity-reducing activities of the natural extracts on cancer cells, and even this secretome can inhibit the migration of these tumor cells, in addition to the fact that the profile of molecules can be modified by natural products. Overall, our findings demonstrate that hAMSC secretome participation in TME interactions can favor the antitumor activities of natural products.


Assuntos
Células-Tronco Mesenquimais , Extratos Vegetais , Secretoma , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Secretoma/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais
5.
Chem Biol Drug Des ; 103(2): e14431, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38373741

RESUMO

Icariin has been shown to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the underlying molecular mechanism by which Icariin regulates osteogenic differentiation needs to be further revealed. The viability of BMSCs was assessed by cell counting kit 8 assay. BMSC osteogenic differentiation ability was evaluated by detecting alkaline phosphatase activity and performing alizarin red S staining. The protein levels of osteogenic differentiation-related markers, sirtuin 1 (SIRT1), ubiquitin-specific protease 47 (USP47), and Wnt/ß-catenin-related markers were determined using western blot. SIRT1 mRNA level was measured using quantitative real-time PCR. The regulation of USP47 on SIRT1 was confirmed by ubiquitination detection and co-immunoprecipitation analysis. Icariin could promote BMSC osteogenic differentiation. SIRT1 expression was enhanced by Icariin, and its knockdown suppressed Icariin-induced BMSC osteogenic differentiation. Moreover, deubiquitinating enzyme USP47 could stabilize SIRT1 protein expression. Besides, SIRT1 overexpression reversed the inhibiting effect of USP47 knockdown on BMSC osteogenic differentiation, and USP47 knockdown also restrained Icariin-induced BMSC osteogenic differentiation. Additionally, Icariin enhanced the activity of the Wnt/ß-catenin pathway by upregulating SIRT1. Icariin facilitated BMSC osteogenic differentiation via the USP47/SIRT1/Wnt/ß-catenin pathway.


Assuntos
Flavonoides , Células-Tronco Mesenquimais , Osteogênese , Sirtuína 1 , Humanos , beta Catenina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Flavonoides/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Técnicas de Silenciamento de Genes
6.
Int. j. morphol ; 42(1): 216-224, feb. 2024. ilus
Artigo em Inglês | LILACS | ID: biblio-1528818

RESUMO

SUMMARY: Senile osteoporosis is mainly caused by reduced osteoblast differentiation and has become the leading cause of fractures in the elderly worldwide. Natural organics are emerging as a potential option for the prevention and treatment of osteoporosis. This study was designed to study the effect of resveratrol on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in osteoporosis mice. A mouse model of osteoporosis was established by subcutaneous injection of dexamethasone and treated with resveratrol administered by gavage. In vivo and in vitro, we used western blot to detect protein expression, and evaluated osteogenic differentiation of BMSCs by detecting the expression of osteogenic differentiation related proteins, calcium deposition, ALP activity and osteocalcin content. Resveratrol treatment significantly increased the body weight of mice, the level of serum Ca2+, 25(OH)D and osteocalcin, ration of bone weight, bone volume/total volume, trabecular thickness, trabecular number, trabecular spacing and cortical thickness in osteoporosis mice. In BMSCs of osteoporosis mice, resveratrol treatment significantly increased the expression of Runx2, osterix (OSX) and osteocalcin (OCN) protein, the level of calcium deposition, ALP activity and osteocalcin content. In addition, resveratrol treatment also significantly increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT in BMSCs of osteoporosis mice. In vitro, resveratrol increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT, Runx2, OSX and OCN protein, the level of calcium deposition, ALP activity and osteocalcin content in BMSCs in a concentration-dependent manner, while SIRT1 knockdown significantly reversed the effect of resveratrol. Resveratrol can attenuate osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells, and the mechanism may be related to the regulation of SIRT1/PI3K/AKT pathway.


La osteoporosis senil es causada principalmente por una diferenciación reducida de osteoblastos y se ha convertido en la principal causa de fracturas en las personas mayores en todo el mundo. Los productos orgánicos naturales están surgiendo como una opción potencial para la prevención y el tratamiento de la osteoporosis. Este estudio fue diseñado para estudiar el efecto del resveratrol en la diferenciación osteogénica de las células madre mesenquimales de la médula ósea (BMSC) en ratones con osteoporosis. Se estableció un modelo de osteoporosis en ratones mediante inyección subcutánea de dexametasona y se trató con resveratrol administrado por sonda. In vivo e in vitro, utilizamos Western blot para detectar la expresión de proteínas y evaluamos la diferenciación osteogénica de BMSC detectando la expresión de proteínas relacionadas con la diferenciación osteogénica, la deposición de calcio, la actividad de ALP y el contenido de osteocalcina. El tratamiento con resveratrol aumentó significativamente el peso corporal de los ratones, el nivel sérico de Ca2+, 25(OH)D y osteocalcina, la proporción de peso óseo, el volumen óseo/ volumen total, el espesor trabecular, el número trabecular, el espaciado trabecular y el espesor cortical en ratones con osteoporosis. En BMSC de ratones con osteoporosis, el tratamiento con resveratrol aumentó significativamente la expresión de las proteínas Runx2, osterix (OSX) y osteocalcina (OCN), el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina. Además, el tratamiento con resveratrol también aumentó significativamente la expresión de SIRT1, p-PI3K/PI3K y p-AKT/AKT en BMSC de ratones con osteoporosis. In vitro, el resveratrol aumentó la expresión de las proteínas SIRT1, p-PI3K/PI3K y p- AKT/AKT, Runx2, OSX y OCN, el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina en BMSC de manera dependiente de la concentración, mientras que La caída de SIRT1 revirtió significativamente el efecto del resveratrol. El resveratrol puede atenuar la osteoporosis al promover la diferenciación osteogénica de las células madre mesenquimales de la médula ósea, y el mecanismo puede estar relacionado con la regulación de la vía SIRT1/PI3K/AKT.


Assuntos
Animais , Masculino , Camundongos , Osteoporose/tratamento farmacológico , Resveratrol/administração & dosagem , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Western Blotting , Modelos Animais de Doenças , Sirtuína 1 , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Resveratrol/farmacologia , Camundongos Endogâmicos C57BL
7.
J Invest Dermatol ; 144(5): 1148-1160.e15, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242315

RESUMO

Long noncoding RNAs are pivotal contributors to the development of human diseases. However, their significance in the context of diabetic wound healing regulated by human umbilical cord mesenchymal stem cells (hUCMSCs) remains unclear. This study sheds light on the involvement of lncCCKAR5 in this process. We found that hUCMSCs exposed to high glucose conditions exhibited a significant downregulation of lncCCKAR5 expression, and lncCCKAR5 played a critical role in modulating autophagy, thus inhibiting apoptosis in hUCMSCs. In addition, the reduction of lncCCKAR5 in cells exposed to high glucose effectively thwarted cellular senescence and facilitated filopodium formation. Mechanistically, lncCCKAR5 served as a scaffold that facilitated the interaction between MKRN2 and LMNA, a key regulator of cytoskeletal function and autophagy. The lncCCKAR5/LMNA/MKRN2 complex played a pivotal role in promoting the ubiquitin-mediated degradation of LMNA, with this effect being further augmented by N6-adenosine methylation of lncCCKAR5. Consequently, our findings underscore the critical role of lncCCKAR5 in regulating the autophagic process in hUCMSCs, particularly through protein ubiquitination and degradation. This intricate regulatory network presents a promising avenue for potential therapeutic interventions in the context of diabetic wound healing involving hUCMSCs.


Assuntos
Adenosina , Adenosina/análogos & derivados , Autofagia , Lamina Tipo A , Células-Tronco Mesenquimais , RNA Longo não Codificante , Cordão Umbilical , Cicatrização , Humanos , Autofagia/efeitos dos fármacos , Adenosina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cordão Umbilical/citologia , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Camundongos , Células Cultivadas , Animais , Apoptose/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Senescência Celular/efeitos dos fármacos
8.
Int J Surg ; 110(4): 1992-2006, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277348

RESUMO

BACKGROUND: The purpose of this study was to investigate the effects of cardiac homing peptide (CHP) engineered bone marrow mesenchymal stem cells (BMMSc) derived exosomes (B-exo) loaded miRNA-499a-5p on doxorubicin (DOX) induced cardiotoxicity. METHODS: miRNA chip analysis was used to analyze the differences between DOX induced H9c2 cells and control group. CHP engineering was performed on BMMSc derived exosomes to obtain C-B-exo. miRNA-499a-5p mimic was introduced into C-B-exo by electroporation technology to obtain C-B-exo-miRNA-499a-5p. DOX was used to establish a model of cardiotoxicity to evaluate the effects of C-B-exo- miRNA-499a-5p in vivo and in vitro . Western blot, immunohistochemistry, immunofluorescence, and other molecular biology methods were used to evaluate the role and mechanism of C-B-exo-miRNA-499a-5p on DOX induced cardiotoxicity. RESULTS: miRNA chip analysis revealed that miRNA-499a-5p was one of the most differentially expressed miRNAs and significantly decreased in DOX induced H9c2 cells as compared to the control group. Exo-and B-exo have a double-layer membrane structure in the shape of a saucer. After engineering the CHP of B-exo, the results showed that the delivery of miRNA-499a-5p significantly increased and significantly reached the target organ (heart). The experimental results showed that C-B-exo-miRNA-499a-5p significantly improved electrocardiogram, decreased myocardial enzyme, serum and cardiac cytokines, improved cardiac pathological changes, inhibited CD38/MAPK/NF-κB signal pathway. CONCLUSIONS: In this study, C-B-exo-miRNA-499a-5p significantly improved DOX-induced cardiotoxicity via CD38/MAPK/NF-κB signal pathway, providing a new idea and method for the treatment of DOX induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Doxorrubicina , Exossomos , MicroRNAs , MicroRNAs/metabolismo , MicroRNAs/genética , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Animais , Cardiotoxicidade/prevenção & controle , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Ratos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Masculino , Modelos Animais de Doenças
9.
J Investig Med ; 72(4): 370-382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38264863

RESUMO

Morinda officinalis polysaccharide (MOP) is the bioactive ingredient extracted from the root of Morinda officinalis, and Morinda officinalis is applied to treat osteoporosis (OP). The purpose of this study was to determine the role of MOP on human bone marrow mesenchymal stem cells (hBMSCs) and the underlying mechanism. HBMSCs were isolated from bone marrow samples of patients with OP and treated with MOP. Quantitative real-time polymerase chain reaction was adopted to quantify the expression of microRNA-210-3p (miR-210-3p) and scavenger receptor class A member 3 (SCARA3) mRNA. Cell Counting Kit-8 assay was employed to detect cell viability; Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling assay and flow cytometry were adopted to detect apoptosis; Alkaline Phosphatase (ALP) activity assay kit was applied to detect ALP activity; Western blot was executed to quantify the expression levels of SCARA3, osteogenic and adipogenic differentiation markers. Ovariectomized rats were treated with MOP. Bone mineral density (BMD), serum tartrate-resistant acid phosphatase 5b (TRACP 5b), and N-telopeptide of type I collagen (NTx) levels were assessed by BMD detector and Enzyme-linked immunosorbent assay kits. It was revealed that MOP could promote hBMSCs' viability and osteogenic differentiation and inhibit apoptosis and adipogenic differentiation. MOP could also upregulate SCARA3 expression through repressing miR-210-3p expression. Treatment with MOP increased the BMD and decreased the TRACP 5b and NTx levels in ovariectomized rats. MOP may boost the osteogenic differentiation and inhibit adipogenic differentiation of hBMSCs by miR-210-3p/SCARA3 axis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Morinda , Osteoporose , Polissacarídeos , Animais , Humanos , Ratos , Medula Óssea/metabolismo , Células Cultivadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/efeitos dos fármacos , MicroRNAs/metabolismo , Morinda/química , Morinda/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteoporose/tratamento farmacológico , Receptores Depuradores/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo , Polissacarídeos/farmacologia , Receptores Depuradores Classe A/efeitos dos fármacos , Receptores Depuradores Classe A/metabolismo
10.
Biomed Pharmacother ; 165: 115130, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37413898

RESUMO

As a common metabolic disorder, hyperglycemia (HG) affects and disrupts the physiology of various systems in the body. Transplantation of mesenchymal stem cells (MSCs) has been used to control the complications of disease. Most of the therapeutic properties of MSCs are attributed to their secretome. This study aimed to investigate the effects of conditioned media extracted from sole or caffeine pre-treated bone-marrow-derived MSCs on hyperglycemia-induced detrimental impact on some aspects of reproduction. The HG was induced by intraperitoneally injection of streptozotocin (65 mg/kg) and nicotinamide (110 mg/kg). Twenty-four male Wistar rats (190 ± 20 g) were divided into control, HG, and the hyperglycemic groups receiving conditioned media of proliferated MSCs solely (CM) or MSCs pre-treated with caffeine (CCM). During the 49-day treatment, body weight and blood glucose were measured weekly. Finally, HbA1c, spermatogenesis development, sperm count, morphology, viability, motility, chromatin condensation, and DNA integrity were examined. Also, testicular total antioxidant capacity (TAC), malondialdehyde, sperm fertilization potential, and pre-implantation embryo development were evaluated. A one-way ANOVA and Tukey's post-hoc tests were used to analyze the quantitative data. The p < 0.05 was considered statistically significant. The CM and with a higher efficiency, the CCM remarkably (p < 0.05) improved body weight and HG-suppressed spermatogenesis, enhanced sperm parameters, chromatin condensation, DNA integrity, and TAC, reduced HbA1c, sperm abnormalities, and malondialdehyde, and significantly improved pre-implantation embryo development versus HG group. The conditioned media of MSCs solely (CM) and more effectively after pre-treatment of MSCs with caffeine (CCM) could improve spermatogenesis development, sperm quality, pre-implantation embryo development, and testicular global antioxidant potential during hyperglycemia.


Assuntos
Cafeína , Meios de Cultivo Condicionados , Fertilização , Hiperglicemia , Células-Tronco Mesenquimais , Espermatogênese , Cafeína/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Hiperglicemia/fisiopatologia , Fertilização/efeitos dos fármacos , Masculino , Animais , Ratos , Modelos Animais de Doenças , Peso Corporal/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Hemoglobinas Glicadas , Espermatogênese/efeitos dos fármacos , Contagem de Espermatozoides , Testículo/efeitos dos fármacos , Testículo/metabolismo , Espermatozoides/anormalidades , Espermatozoides/efeitos dos fármacos
11.
Toxicol Lett ; 380: 53-61, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37024064

RESUMO

This study aimed to explore the mechanism of alcohol-induced Osteonecrosis of the femoral head (ONFH) through in vivo and in vitro experiments. In vitro, the Oil Red O staining showed that ethanol promoted extracellular adipogenesis in a dose-dependent manner. ALP staining and alizarin red staining showed that ethanol inhibited the formation of extracellular mineralization in a dose-dependent manner. The Oil Red O staining showed that miR122 mimics and Lnc-HOTAIR SiRNA rescued extracellular adipogenesis induced by ethanol in BMSCs. Besides, we found that the high expression of PPARγ in BMSCs recruited histone deacetylase 3 (HDAC3) and histone methyltransferase (SUV39H1), which reduced the histone acetylation level and increased the histone methylation level in the miR122 promoter region, respectively. In vivo, the levels of H3K9ac, H3K14ac, and H3K27ac of miR122 promoter region in the ethanol group were significantly decreased compared to the control group, respectively. The levels of H3K9me2 and H3K9me3 of miR122 promoter region in the ethanol group were significantly increased compared to the control group. Lnc-HOTAIR/miR-122/PPARγ signaling mediated the alcohol-induced ONFH in the rat model. Furthermore, the persistent decrease of miR122 expression mediated the continuous progress of alcohol-induced ONFH after stopping alcohol consumption.


Assuntos
Cabeça do Fêmur , MicroRNAs , Osteonecrose , PPAR gama , RNA Longo não Codificante , Animais , Ratos , Etanol/toxicidade , Cabeça do Fêmur/metabolismo , Cabeça do Fêmur/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/metabolismo , Osteonecrose/metabolismo , Osteonecrose/patologia , PPAR gama/metabolismo , Ratos Sprague-Dawley , RNA Longo não Codificante/metabolismo
12.
J Orthop Surg Res ; 18(1): 312, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087476

RESUMO

BACKGROUND: Although fisetin may exist widely in many natural herbs, its anti-OP mechanism is still unclear. The aim of this study is to explore the molecular anti-osteoporosis (OP) mechanism of fisetin based on network pharmacology and cell experiments. METHODS: The target of fisetin was extracted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The targets of OP were obtained by DisGeNET, GeneCards and the Comparative Toxicogenomics Database, and the targets of fisetin in OP were screened by cross-analysis. The protein-protein interaction (PPI) network was constructed by STRING, and the core targets were obtained. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses on common targets via the Database for Annotation, Visualization and Integrated Discovery. Finally, an in vitro cell experiment was used to verify the anti-OP effect and mechanism of fisetin. RESULTS: There are 44 targets of fisetin related to the treatment of OP. The PPI results suggest that CTNNB1, CCND1, TP53, JUN, and AKT1 are the core targets. A total of 259 biological process, 57 molecular function and 26 cell component terms were obtained from GO enrichment analysis. The results of KEGG pathway enrichment analysis suggested that fisetin treatment of OP may be related to the Wnt signaling pathway, estrogen signaling pathway, PI3K-Akt signaling pathway and other signaling pathways. In vitro cell experiments showed that fisetin significantly increased the expression levels of ALP, collagen I, osteopontin and RUNX2 in bone marrow mesenchymal stem cells (BMSCs) (p < 0.05). Fisetin also increased the gene expression levels of Wnt3 and ß-catenin (CTNNB1) in BMSCs, which indicates that fisetin can regulate the Wnt/ß-catenin signaling pathway and promote the osteogenic differentiation of BMSCs. CONCLUSIONS: Fisetin acts on multiple targets and pathways in the treatment of OP; mechanistically, it regulates the Wnt/ß-catenin signaling pathway, which promotes the osteogenic differentiation of BMSCs and maintains bone homeostasis. The results of this study provide a theoretical basis for further study on the complex anti-OP mechanism of fisetin.


Assuntos
Medicamentos de Ervas Chinesas , Flavonóis , Farmacologia em Rede , Osteoporose , Via de Sinalização Wnt , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases , Via de Sinalização Wnt/efeitos dos fármacos , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Osteoporose/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo
13.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047701

RESUMO

Cartilage is an avascular tissue and sensitive to mechanical trauma and/or age-related degenerative processes leading to the development of osteoarthritis (OA). Therefore, it is important to investigate the mesenchymal cell-based chondrogenic regenerating mechanisms and possible their regulation. The aim of this study was to investigate the role of intracellular calcium (iCa2+) and its regulation through voltage-operated calcium channels (VOCC) on chondrogenic differentiation of mesenchymal stem/stromal cells derived from human bone marrow (BMMSCs) and menstrual blood (MenSCs) in comparison to OA chondrocytes. The level of iCa2+ was highest in chondrocytes, whereas iCa2+ store capacity was biggest in MenSCs and they proliferated better as compared to other cells. The level of CaV1.2 channels was also highest in OA chondrocytes than in other cells. CaV1.2 antagonist nifedipine slightly suppressed iCa2+, Cav1.2 and the proliferation of all cells and affected iCa2+ stores, particularly in BMMSCs. The expression of the CaV1.2 gene during 21 days of chondrogenic differentiation was highest in MenSCs, showing the weakest chondrogenic differentiation, which was stimulated by the nifedipine. The best chondrogenic differentiation potential showed BMMSCs (SOX9 and COL2A1 expression); however, purposeful iCa2+ and VOCC regulation by blockers can stimulate a chondrogenic response at least in MenSCs.


Assuntos
Bloqueadores dos Canais de Cálcio , Condrócitos , Células-Tronco Mesenquimais , Nifedipino , Osteoartrite , Humanos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nifedipino/farmacologia , Osteoartrite/metabolismo , Canais de Cálcio Tipo L , Bloqueadores dos Canais de Cálcio/farmacologia
14.
Macromol Biosci ; 23(5): e2300053, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36942889

RESUMO

Polyrotaxane is a supramolecular assembly consisting of multiple cyclic molecules threaded by a linear polymer. One of the unique properties of polyrotaxane is molecular mobility, cyclic molecules moving along the linear polymer. Molecular mobility of polyrotaxane surfaces affects cell spreading, differentiation, and other cell-related aspects through changing subcellular localization of yes-associated proteins (YAPs). Subcellular YAP localization is also related to cell senescence derived from oxidative stress, which is known to cause cancer, diabetes, and heart disease. Herein, the effects of polyrotaxane surface molecular mobility on subcellular YAP localization and cell senescence following H2 O2 -induced oxidative stress are evaluated in human mesenchymal stem cells (HMSCs) cultured on polyrotaxane surfaces with different molecular mobilities. Oxidative stress promotes cytoplasmic YAP localization in HMSCs on high-mobility polyrotaxane surfaces; however, low-mobility polyrotaxane surfaces more effectively maintain nuclear YAP localization, exhibiting lower senescence-associated ß-galactosidase activity and senescence-related gene expression and DNA damage than that seen with the high-mobility surfaces. These results suggest that the molecular mobility of polyrotaxane surfaces regulates subcellular YAP localization, thereby protecting HMSCs from oxidative stress-induced cell senescence. Applying the molecular mobility of polyrotaxane surfaces to implantable scaffolds can provide insights into the prevention and treatment of diseases caused by oxidative stress.


Assuntos
Senescência Celular , Ciclodextrinas , Células-Tronco Mesenquimais , Estresse Oxidativo , Polímeros , Rotaxanos , Humanos , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Polímeros/farmacologia , Rotaxanos/farmacologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas de Sinalização YAP/metabolismo , beta-Galactosidase/metabolismo , Dano ao DNA/efeitos dos fármacos , Tecidos Suporte/química , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Ciclodextrinas/farmacologia
15.
J Orthop Surg Res ; 18(1): 129, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814286

RESUMO

BACKGROUND: While autophagy is essential for stem cells' self-renewal and differentiation, its effect on bone marrow mesenchymal stem cells (BMSCs) remains unclear. This study aimed to investigate the interaction between autophagy and osteogenic differentiation using rapamycin (RAPA), a classical autophagy agonist with osteo-regulatory effects. METHODS: Rat BMSC's autophagy was analyzed after osteoinduction (0, 7, 14, and 21 d) by western blotting, immunofluorescence, and real-time quantitative polymerase chain reaction (RT-qPCR). In addition, we evaluated osteogenic differentiation using alizarin red staining, alkaline phosphatase assays, and RT-qPCR/Western blotting quantification of bone sialoprotein, type 1 collagen, alkaline phosphatase, osteopontin, and Runt-related transcription factor 2 mRNA and protein levels. RESULTS: The BMSC's basal autophagy level gradually decreased during osteogenic differentiation with a decrease in BECN1 level and the lipidated (LC3-II) to unlipidated (LC3-I) microtubule-associated protein 1 light chain 3 ratio and an increase in the expression of selective autophagic target p62. In contrast, it increased with increasing RAPA concentration. Furthermore, while 2 nM RAPA promoted BMSC osteogenic differentiation on days 7 and 14, 5 nM RAPA inhibited osteogenesis on days 14 and 21. Inhibition of autophagy by the inhibitor 3-methyladenine could impair RAPA's osteogenesis-enhancing effect on BMSCs. CONCLUSIONS: The BMSC's basal autophagy level decreased over time during osteogenic differentiation. However, an appropriate RAPA concentration promoted BMSC osteogenic differentiation via autophagy activation.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Sirolimo , Animais , Ratos , Fosfatase Alcalina/metabolismo , Autofagia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Sirolimo/farmacologia
16.
Curr Mol Med ; 23(5): 410-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35996252

RESUMO

BACKGROUND: Vitamin D receptor (VDR) is critical for mineral and bone homeostasis since it plays an essential role in the osteoblast differentiation of bone marrow mesenchymal stem cells (BM-MSCs). Hydroxysafflor yellow A (HSYA) has the potential to promote bone mineralization and inhibit bone resorption, while its detailed mechanism needs to be elaborated. OBJECTIVE: This study intends to explore the action of HSYA on the proliferation and differentiation of BM-MSC and the underlying mechanism. METHODS: Different concentrations of HSYA to BM-MSC and CCK-8, and EdU were used to detect cell viability and proliferation. The alkaline phosphatase (ALP) was used to observe the differentiation ability of BM-MSC osteoblasts. The calcium uptake and mineralization of osteoblast-like cells were observed by alizarin red staining. The level of calcium ion uptake in cells was detected by flow cytometry. AutoDock was performed for molecular docking of HSYA to VDR protein. Immunofluorescence and western blotting were performed to detect the expression of VDR expression levels. Finally, the effect of VDR was verified by a VDR inhibitor. RESULTS: After treatment with HSYA, the proliferation and calcium uptake of BM-MSC were increased. The level of ALP increased significantly and reached its peak on the 12th day. HSYA promoted calcium uptake and calcium deposition, and mineralization of osteoblasts. The western blotting and immunofluorescence showed that HSYA increased the expression of VDR in the osteoblast-like cell's nucleus and upregulated Osteocalcin, S100 calcium-binding protein G, and CYP24A1. In addition, HYSA treatment increased the expression of osteopontin and the synthesis of osteogenic proteins, such as Type 1 collagen. After the addition of the VDR inhibitor, the effect of HSYA was weakened. CONCLUSION: HSYA could significantly promote the activity and proliferation of osteoblasts and increase the expression level of VDR in osteoblasts. HSYA may also improve calcium absorption by osteoblasts by regulating the synthesis of calciumbinding protein and vitamin D metabolic pathway-related proteins.


Assuntos
Células da Medula Óssea , Chalcona , Células-Tronco Mesenquimais , Osteoblastos , Quinonas , Osteoblastos/citologia , Diferenciação Celular/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Cálcio/metabolismo , Receptores de Calcitriol/metabolismo , Humanos , Chalcona/análogos & derivados , Chalcona/farmacologia , Quinonas/farmacologia
17.
Eur J Med Chem ; 245(Pt 1): 114927, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36379105

RESUMO

Adiponectin and leptin are major adipocytokines that control crosstalk between adipose tissue and other organ systems. Hypoadiponectinemia and hypoleptinemia are associated with human metabolic diseases. Compounds with adipocytokine biosynthesis-stimulating activities could be developed as therapeutics against diverse metabolic conditions. In phenotypic screening with human bone marrow mesenchymal stem cells (hBM-MSCs), (E)-4-hydroxy-3-(3-(4-hydroxy-3-methoxyphenyl)acryloyl)-6-methyl-2H-pyran-2-one (1) was identified to increase adiponectin biosynthesis during adipogenesis and simultaneously to stimulate leptin production. Using the compound 1 structure, the structure-activity relationship study was performed to discover more potent compounds stimulating both adiponectin and leptin production. (E)-3-(3-(2-fluoropyridin-4-yl)acryloyl)-4-hydroxy-6-methyl-2H-pyran-2-one (11) exhibited the most potent adiponectin (EC50, 2.87 µM) and leptin (EC50, 2.82 µM) biosynthesis-stimulating activities in hBM-MSCs. In a target identification study, compound 11 was characterized as a dual modulator binding to both peroxisome proliferator-activated receptor (PPAR) γ and glucocorticoid receptor (GR). This study provides a novel pharmacophore for PPARγ/GR dual modulators with therapeutic potential against human metabolic diseases.


Assuntos
Adiponectina , Leptina , Células-Tronco Mesenquimais , PPAR gama , Piranos , Receptores de Glucocorticoides , Humanos , Adipogenia , Adiponectina/biossíntese , Leptina/farmacologia , Leptina/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , PPAR gama/agonistas , Piranos/química , Piranos/farmacologia , Receptores de Glucocorticoides/agonistas
18.
Oxid Med Cell Longev ; 2022: 8287227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910831

RESUMO

Acute liver injury (ALI) is characterized as a severe metabolic dysfunction caused by extensive damage to liver cells. Ferroptosis is a type of cell death dependent on iron and oxidative stress, which differs from classical cell death, such as apoptosis and necrosis. Ferroptosis has unique morphological features, which mainly include mitochondrial dissolution and mitochondrial outline reduction. Furthermore, the intracellular accumulation of lipid peroxides directly affects the occurrence of ferroptosis. Baicalin, the main compound isolated from Scutellaria baicalensis, has anti-inflammatory and antioxidative effects. Recently, exosomes derived from preconditioned mesenchymal stem cells (MSCs) have shown great potential in the treatment of various diseases including ALI. This study investigates the ability of exosomes derived from baicalin-pretreated MSCs (Ba-Exo) to promote liver function recovery in mice with ALI compared with those without pretreatment. Through in vivo and in vitro experiments, this study demonstrates for the first time that Ba-Exo greatly attenuates D-galactosamine and lipopolysaccharide (D-GaIN/LPS)-induced liver damage and inhibits reactive oxygen species (ROS) production and lipid peroxide-induced ferroptosis. Moreover, P62 was significantly upregulated in Ba-Exo, whereas its downregulation in Ba-Exo counteracted the beneficial effect of Ba-Exo. P62 regulates hepatocyte ferroptosis by activating the Keap1-NRF2 pathway. The beneficial effect of Ba-Exo in inhibiting ferroptosis was also attenuated after the NRF2 pathway was inhibited. Therefore, baicalin pretreatment is an effective and promising approach to optimize the therapeutic efficacy of MSC-derived exosomes in ALI.


Assuntos
Exossomos , Ferroptose , Células-Tronco Mesenquimais , Animais , Exossomos/metabolismo , Flavonoides/farmacologia , Hepatócitos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo
19.
Biomaterials ; 288: 121732, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36031457

RESUMO

Regenerating defective bone in patients with diabetes mellitus remains a significant challenge due to high blood glucose level and oxidative stress. Here we aim to tackle this issue by means of a drug- and cell-free scaffolding approach. We found the nanoceria decorated on various types of scaffolds (fibrous or 3D-printed one; named nCe-scaffold) could render a therapeutic surface that can recapitulate the microenvironment: modulating oxidative stress while offering a nanotopological cue to regenerating cells. Mesenchymal stem cells (MSCs) recognized the nanoscale (tens of nm) topology of nCe-scaffolds, presenting highly upregulated curvature-sensing membrane protein, integrin set, and adhesion-related molecules. Osteogenic differentiation and mineralization were further significantly enhanced by the nCe-scaffolds. Of note, the stimulated osteogenic potential was identified to be through integrin-mediated TGF-ß co-signaling activation. Such MSC-regulatory effects were proven in vivo by the accelerated bone formation in rat calvarium defect model. The nCe-scaffolds further exhibited profound enzymatic and catalytic potential, leading to effectively scavenging reactive oxygen species in vivo. When implanted in diabetic calvarium defect, nCe-scaffolds significantly enhanced early bone regeneration. We consider the currently-exploited nCe-scaffolds can be a promising drug- and cell-free therapeutic means to treat defective tissues like bone in diabetic conditions.


Assuntos
Regeneração Óssea , Diabetes Mellitus , Células-Tronco Mesenquimais , Tecidos Suporte , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular , Cério/farmacologia , Cério/uso terapêutico , Diabetes Mellitus/metabolismo , Integrinas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Estresse Oxidativo , Ratos , Fator de Crescimento Transformador beta/metabolismo
20.
Oxid Med Cell Longev ; 2022: 8223737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035224

RESUMO

Steroid-induced osteoporosis (SIOP) is a form of secondary osteoporosis, but its specific mechanism remains unclear. Glucocorticoid (GC-)-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent type of programmed cell death and can be induced by many factors. Herein, we aimed to explore whether GCs cause ferroptosis of BMSCs, identify pathways as possible therapeutic targets, and determine the underlying mechanisms of action. In this study, we used high-dose dexamethasone (DEX) to observe whether GCs induce ferroptosis of BMSCs. Additionally, we established a rat SIOP model and then assessed whether melatonin (MT) could inhibit the ferroptosis pathway to provide early protection against GC-induced SIOP and investigated the signaling pathways involved. In vitro experiments confirmed that DEX induces ferroptosis in BMSCs. MT significantly alleviates GC-induced ferroptosis of BMSCs. Pathway analysis showed that MT ameliorates ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates the expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the antiferroptotic effect of MT, but when the PI3K pathway is blocked, the effect of MT is weakened. Using in vivo experiments, we confirmed the in vitro results and observed that MT can obviously protect against SIOP induced by GC. Notably, even after the initiation of GC-induced ferroptosis, MT can confer protection against SIOP. Our research confirms that GC-induced ferroptosis is closely related to SIOP. MT can inhibit ferroptosis by activating the PI3K/AKT/mTOR signaling pathway, thereby inhibiting the occurrence of SIOP. Therefore, MT may be a novel agent for preventing and treating SIOP.


Assuntos
Ferroptose , Melatonina , Células-Tronco Mesenquimais , Osteoporose , Transdução de Sinais , Animais , Ferroptose/efeitos dos fármacos , Melatonina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoporose/induzido quimicamente , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley , Esteroides/efeitos adversos , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...